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ABSTRACT

This thesis presents an alternative approach to Teleconferencing Systems and
refers to a system which uses a face sequence as input for animation of a wire frame
model. The system exploits a general model of human face originally developed for
realistic facial animation. The visual observation is achieved by using active contour
models as snakes which work reciprocally with a physical model describing facial ex-
pression. The active contours serve to track the nonrigid motions of facial features
and solve the correspondence problem of 3-D motion estimation. The 3-D rigid motion
parameters are estimated by a neural network that is trained using back propagation
algorithm. This system uses wireframe models and provides the imitation of a face se-

quence based upon the facial expression and 3-D rigid motion parameters estimation.



OZET

Bu tez , Tele-konferans sistemlerine bir segenek tegkil edecek olan ve yiiz imge
dizisini girdi olarak kullanan bir kafes gergeve modelinin canlandinlmasim saglayan
bir sistemi agiklamaktadir. Bu sistem, gercege cok yakin bir yliz canlandirmas: igin
geligtirilmis genel bir insan yiiz modelini ortaya koymaktadir. Goriintiisel tarama, yiiz
ifadelerini tarifleyen bir fiziki model ile egzamanl olarak galisan kobra benzeri bir etkin
cevrit modeli ile elde edilmektedir. Etkin gevrit modeli, yliz 6zniteliklerinin degisen
devinimlerinin izlenimini saglamaktadir ve t¢ boyutlu kati devinim kestiriminin denklik
problemine ¢ozuim getirmektedir. ﬂ'g boyutlu kati devinimin parametreleri, geri yayihm
algoritmasi kullamilarak bilgi yiklenmis yapay bir sinir agi ile kestirilmektedir. Sonucg
olarak bu sistem, yuz ifadelerini ve i¢ boyutlu kati devinimlerin kestirilmesi suretiyle

bize yuz imge dizisinin kafes cergeve modeli ile taklit edilmesini saglamaktadir.
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1. INTRODUCTION

1.1. Model-Based Image Coding

The human face is one of the most important parts of the body which has a
communicative power in social interaction. Facial expressions and related changes in
facial behavior inform us of the emotional state of a person. In order to understand
more about the power of communicativeness of the face, it is necessary to study the
perception of a face and related information processing.

Of all the nonverbal behaviors -body movements, posture, voice- the face is
probably the most accessible part among the mechanisms which govern our emotional
and social lives. The current technological developments provide the possibility of
automated systems for monitoring facial expression and animating synthetic facial
models.

The automation of the human face processed by a computer is a significant
step towards developing effective human-machine interface. Therefore it is necessary
to investigate the techniques and related algorithms focussed on understanding facial
gestures and to automate these interpretations. In this context, understanding can be
called analysis and the automation can be considered as the synthesis part.

Realistic animation is one of the most important tasks which would be serving
as a bridge over the gap in between man and machine. In this perspective, computers
may be extensively used in the training of children at various ages for all types of
educational purposes. Another distictive area is the use of the methodology in the
creation of high quality eflects in the film industry. For example, using the animated
vision of a death film star in a new movie. An important application of automated

facial extraction, the one with most significant commercial potential in mutimedia



services, is video-phone or teleconferencing application. It is argued that for very low
bit rate high quality video coding model-based coding of facial expressions in head-
and-shoulder scenes, i1s a viable alternative. Such a scheme is realized by employing
techniques from computer graphics. Beside being used in high compression application,
these model-based systems can potentially be used to realize telepresence and virtual
offices.

The analysis of facial expressions consists first in extracting features of the
face such as eyes, lips (the most expressive parts indicating the emotional state of
a person) and then tracking the evolution in time of these and other contours. For
the extraction, a technique based on active contours model (snakes) is used . This
method traces linear facial features, estimates the corresponding parameters of three
dimensional wireframe face models, and reproduces facial expressions. This approach
is introduced by Terzopoulos and Waters [21].

Another approach has been proposed by Mase who developed a method for
tracing facial expression using optical flow. This approach is an extension of Pentland’s

work on lips reading.

1.1.1. Problem Statement

We address the problem of the rigid and local motion estimation of human face,
and animation of wireframe model with respect to these parameters. This problem is
solved in three steps .

1) Extraction of feature points (eyes, lips or mouth).

2) 3-D human head rigid motion estimation (rotation, translation)

3) Animation of the wireframe.

For the extraction of features, we use active contour (snakes) models. The
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FIGURE 1.1. Tracking of a speaker’s face scene by a wireframe




displacements of stationary features such as eyes and lips, give us information about
the rigid motion of the head, such as head shaking and the local contour deformations
caused by expression 'changes such as smiling, talking or eye blinding.

The system of the human head movement imitation is as follows: Features are
extracted by using active contours. Later 3-D motion parameters are obtained out of
the features that globally change. The local displacement vectors are calculated by
using the 3-D motion estimation parameters and features points. Then animation is
performed by using all of these informations. The system under consideration is shown
in Figure 1.1.

THESIS OUTLINE

In this thesis, 3 main parts of model-based image coding such as feature extrac-
tion, 3-D motion estimation, animation are presented:

Chapter 1 describes an active contour that is a model which can alter its shape
under the influence of energy fields. And the effectiveness of this model is discussed by
following experiments.

Chapter 2 includes the 3-D human head motion estimation problem and gives
an alternative solution different from the traditional analytical approaches, by using
artificial neural network.

Chapter 3 discusses the animation procedures that is based on principles of
mathematical physics. And then a two-layer model is developed for the animation of

the 3-D wireframe human head.



2. Feature Extraction by Snakes

2.1. Introduction

In recent computational vision research, low level tasks such as edge or line
detection and motion tracking have been widely regarded as autonomous bottom-up
processes. The computations proceed by utilizing only what is available in the image
itself and provide a unique answer for image segmentation. This rigid approach causes
some mistakes made at low level without giving opportunity for correction.

This situation imposes a requirement for more reliable low level mechanisms.
Such low level mechanisms should provide sets of alternative organizations among which
higher level processes may choose rather than providing the users with a unique answer.

One of the important low level tasks is to find image boundaries. Such bound-
aries can be used for different purposes such as eyes and lips tracking for teleconferences
or finding the shape of an organ for medical fields. The snake, which is a deformable

model, permits us to simultaneously solve these segmentation and tracking problems.

2.2. Overview

A deformable model is a model which can alter its shape under the influence
of energy fields. These energies effect the deformable model and force it to change
its shape. Therefore , it is important to design energy functions with local minima
comprising sets of alternative solutions, available to higher-level process. The choice

among these alternatives could require some type of optimization in the absence of a
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well-developed high-levei mechanism. By adding suitable energy terms to the mini-
mizations, it is possible for user to push the model out of a local minimum towards
the desired solution. 'i‘he result is an active model that falls into the desired solution
when placed near to it.

Snakes can be represented as energy-minimizing splines guided by external con-
straint forces and image forces such as lines, edges, subjective contours and region
homogenities found in the image. Furthermore, internal spline forces impose smooth-
ness constraints on the modelled contours. By combining and integrating various type
of information found in the image, snakes can lead to results that are comparable with
other image-segmentation techniques such as edge linking and boundary detection.

The dynamic behavior of the snakes is its most distinguishing feature. This
dynamic property can be used both for images , as well as for the image sequences. A
snake will stick to an image feature by following any small deformation that may occur
during image feature displacements from frame to frame. If the image feature moves
only a small distance between frames, then snakes can function properly and catch
up with the displacements. For larger displacements , snakes are relatively blind in
their search of the desired contour. The snake is able to track only small deformations
on 1ts own, that is, without the help of higher level or more complex process. Most
of the processing time required by this active contour model to converge to a image
feature is consumed in the initial frame. Then the snake can track the image feature
by dynamically sticking to its boundaries. However, some amount of user interaction
is required to provide an initial position for the snakes in the first analyzed frame.

This variational approach in finding image contours, differs from traditional
approaches of detecting edges and then linking them. Detection of edges gives a set of
pixels which seldom characterizes a boundary completely due to noise or the breaks in
the boundary from non uniform illumination, and other effects that introduce superious

intensity discontinuities. Thus , edge detection algorithms typically are followed by



linking and other detection procedures such as neighborhood operators designed to
assemble edge pixels into meaningful boundaries. For example, one of the simplest
approaches for linking edge points is to analyze the characteristics of pixels in a small
neighborhood about every point in an image, forming a boundary of pixels that share

some common properties.

2.3. Previous Studies

Since the keystone of the segmentation and the tracking is the notion of an
active contour model, we will consider briefly the previous studies in this direction.

The snakes are dynamic contours leading to the Euler-Lagrange equations of
motion. The original model as presented by Kass [15] is used to locate smooth curves
in 2-D imagery. What Kass proposed is an active contour which changes its shape
with respect to internal and external energies. Snake's total energy can be defined

mathematically as follows:

Esnake = Z(Eint + Ee:rt) (21)

Kass has argued that the internal energy prevents excessive snake deformations
which in turn bring within the continuity constraints.
Terzopoulos and Watkin [15] add new external constraints such as line and

corner point attractions in order to get the desired shape of the image objects. External

energy is defined as follows;



Eezxt = Eimage = Eedge + Ecorner + .....0thertypesofenergies. (2.2)

Due to the flexibility of the above equation, further generalization is possible
with the addition of new terms related to the image features. |

Frederic Leymarie and Martin D. Levine use snakes for cell tracking and they
propose improvements to the original description of the model and an improved termi-
nation criteria for the optimization scheme [13].

Laurent Cohen and Isaac Cohen introduce the balloon model as a way to gen-
eralize and solve some of the problems encountered with the original model proposed
by Kass, Watkin and Terzopoulos. The problem arises when the snake is not affected
by any counterbalancing forces. In that situation, it tends to shrink onto itself due to
the minimization of internal energy. Accordingly, an internal pressure is introduced,
by considering the snake as a balloon which is inflated. Furthermore, they used snakes
for 3-D object reconstruction by defining 3-D surfaces as series of 2-D planar curves [5]
8].

An important aspect of research is about the minimization procedure of the
snake energy. Amir Amani, Terry E. Weymouth and Ramesh C. Jain use dynamic
programming for solving variational problems originating from the snake energy dissi-
pation. Dynamic programming determines the minimum not by means of derivatives
as in the variational approach, but rather by a straightforward search technique [2].

Kuk and Lai present in [12] an integrating approach in modeling, extracting,
detecting and classifying deformable contours directly from noisy images. They de-
velop an minimax criterion whereby the parameters of snakes can be automatically

and implicitly determined along the contour. Furthermore they formulate a set of en-



ergy functionals which yield snakes that contain Hough transform that is used for the
initialization of the deformable contours.

Alan Yuille proposed a method for detecting and describing features of faces
using deformable templates [1]. The features of interest, for an eye, is described by
parameterized templates. An energy function is defined which links edges, peaks, and
valleys in the image intensity to correspond properties of the templates. The template
then interacts dynamically by changing its parameter values in order to minimize the

energy function.

2.4. The Model

A snake is a model of deformable curve or contours (if closed) composed of
abstract elastic materials. Two types of material such as strings and rods are used are
used in snakes. Strings make the snake resistant to stretching, whereas rods make it
resistant to bending. The snake is constrained to lie in P, which is called potential
surface under the action of a gravitational force g . In other words, a weight is assigned
to the snake in order to make it fall down the slope of surface P.

Depending on the nature of the surface considered, the snake will be used for
different purposes. Typically, the surface P can correspond to image intensities or to
contrast values.

The natural way to force the snakes to move in order to reach a lower grav-
itational potential energy, by seeking valleys in the potential surface, is to convert
potential energy to kinetic energy. The potential energy of the snake is given by sum
of its gravitational potential energy and of the potential energy terms obtained from

the internal and external constraints acting on it. Then, the kinetic energy is dissipated
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by damping, resulting in the snake reaching a new lower equilibrium, that is, lower in
terms of potential energy and, thereby, lower in terms of height. By following such a
natural description of the dynamics of an active contour, the snake model has been
first described in terms of a Lagrangian formulation of the motion.

Features in the image plane can be considered as data sets that can be repre-
sented by a deformable model. Reconstruction can be implemented in terms of this
model. Using deformable models (snakes) for image segmentation leads us to the
reconstruction problems which are inherently inverse problems which tend to be math-
ematically ill-posed. However, through regularization, they may be reformulated as
well-posed variational principles. The Tikhonov regularization employs a specific class
of so-called stabilizing functional to restrict admissible solutions to the space of smooth
functions.

To better understand the Tikhonov regularization, we should consider the ex-
ample given below for reliably estimating point derivatives. Example: Let vz(z;) be
a function of v(z) given only a certain approximate data sequences {z:, v}, are as-
sumed to be independent, normally distributed random variables with zero means and
variance o2

Difficulties arise because no matter how small the errors ¢;, the differences
between the true point derivatives v (z;) and the numerical derivatives of data say
(vi — vi_1)/h can be arbitrarily large. Since one can not guarantee that the solution
will be stable with respect to small perturbations of the data, numerical differentiation
unlike numerical integration is an ill-posed problem. The above problem may therefore
be approached through regularization [20].

Tikhonov proposed a general stabilizer for univariate regularization, so that the

pth order weighted Sobolev norm is given as [14]:
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4" ”(x))) dz (2.3)

Jvll; = z WAL

where the sequences {wm(z)} are prescribed nonnegative and continuous weighting
functions. The stabilizer for the snake, as will be shown in the next section is a

particular norm |[v||2 for p = 2 and wo = 0, w; = a and w, = B.

2.4.1. The Dynamics

Consider a deformable curve v(s,t), with parameters s (spatial index) and ¢
(time), defined on given open intervals Q and T, respectively. The deformable curve
is a function of two coordinate variables z and y with the same parametrization is as

defined:
o(s,8) = (als,1),3(s,1)) 1 s € Q1 € T

The snake has two deformable degrees of freedom in the plan, that is, in  and
y coordinates resepectively. The potential energy function of the snake F,nake(v) is

defined as:

Esnake(v) e %/‘][Eint(v) + Eeu(’l})]ds (24)
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J'/-’ﬂ‘\

V(s,t=t) \‘\

FIGURE 2.1. Snake structure

As it is seen clearly the integration is taken along the path Q. E., gives rise
to external constraint or gravitational field forces, respectively. E;,; represents the

internal potential energy of the snakes; and it is defined as follows:

Eini(v(s)) = as) [ va [* +8(s) | vss [ (2.5)
where we define v, = 2 and v,, = % respectively. The first term a(s) | v, |2

forces the snake points to behave in a string like movement whereas the second term
B(s) | vy |? forces them to line up on a rod . The weight a(s) regulates the tension of
the snakes, whereas (3(s) regulates its rigidity. Position or tangent discontinuities may
be introduced along the snake by setting these weights to zero.

The external potential energy E.;; may arise from two complementary types
of forces: pulling and pushing. It is suggested that the terms spring and wolcano
to model these two forces. A spring is created by defining tension force between a
snake element and a selected point on the potential surface. A volcano is created by

locally deforming the potential surface. Springs are typically used to force the snake
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to attach to the desirable feature, such as the curvature extrema of a contour, whereas
the volcanos are used to push the snake away from undesirable local minima of the
potential field, like those due to noise or isolated edges.

By adding the coeflicients 1/2 to the terms, the equation 2.4 can be simplified

as follows:

Epnate(v) :/nEm(v) + %(a(s) v, [2 +6(s) | vs0 [2)ds (2.6)

Representing the integrand by E,nqke = F(s,v,,vs), the Euler-Lagrange neces-

sary condition is obtained as (Details are found in the Appendix A)

0 0?
F'U - EFVJ + @Fvu = 0 (2'7)

Substituting the terms in the equation above one obtains a pair of independent

Euler-Lagrange equations,

: G O Ben(v)) _
—E(a(s)m,) i ﬁ(ﬂ(s)zu) + oz 0 (2.8)
~gelateln) + g5(B(shun) + 282D (2:9)

Given the potential energy function E,n.ke for a specific initial position, a min-
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imization procedure can be applied to reach a more stable energy level. The mini-
mization procedure must transform the potential energy to kinetic energy by using

Newtonian approach as:

Myt + YTt + fint = fe:tt (210)

where v is the dissipation coefficient and m is the mass. In the Eq. 2.10 the system
will be stable when internal force and external force are equal. Consequently the Eq.
2.8 and 2.9 can be thought of as the sum of external and internal forces. The iterative

solution of these equations becomes:

et 92— o (6s)ea) + g (Be)eur) = ~fo(v) (211)
0 0?
mYys + YYe — a(a(s)ys) + égg(ﬁ(s)yu) = “fy(v) (2-12)

_ 9z , — @ — 8% _ & _ 8 ~ @
where Ty = TS Y = 5%, Ty = B2 Yie = gt‘g, and f:r = E(Eext), fy = a_g(Eezt)
Fixing m = 0 does not cause any problems in our approach. The system will reach a

more stable energy level in that situation too.
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2.4.2. Potential Field

Snake deformations are dependent on both internal forces and external forces.
Internal forces act like dynamic constraints of snakes, which deform according to ex-
ternal forces.

External energy can be called potential field. External forces must meet the
requirement of gathering information from data (edge points). Edge operator when
applied to a smoothed image, gives disperse set of edge points. In an edge image,
the snake does not know how to detect the image edge points. So the potential field
somehow must provide information to snakes about edge locations. That is, an edge

should be recognizable by snakes.

Intensity

255 e —

0 © =S

Edge point Edge point Xory

FIGURE 2.2. 1-D aspect of an image after edge detector

In order to obtain a good localization of edge points and to reduce the noise
effect, first the image is smoothed by a smoothing operator. Than by an edge operator,
we can extract image boundaries. In Figure 2.2, a representation of an edge image
structure is shown. Here, after the edge detecting and tresholding, the negative of the
intensity image has been taken. Now, a potential field can be obtained by using image

edge information. One of the solutions is to apply again a smoothing operator to an
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Intensity /' The energy difference

255
Snak

The edge points

m—

X ory

FIGURE 2.3. 1-D aspect of an image after smoothing in order to get potential field

Intensity = Snake point

255

/— The energy difference
']

= The edge points

X ory

FIGURE 2.4. 1-D aspect of an image after Euclidean distance operator in order to get

potential field

edge image. As seen in Figure 2.3, a smoothing operator, in some sense , forms hills
in the image plane. As the snake point reaches the curvature point , it starts sloping
downwards and comes to the desired edge point.

The smoothing operator does not give satisfactory results and doesn’t form large
scaled hills. When the snake is located at a high plane region , it is not attracted by
external forces that are produced by the potential field. One of the ways for obtaining
large scaled hills is to convolve the edge image by a large size window smoothing

operator, which inceases the computational complexity.
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FIGURE 2.5. The original image (left) and its edges (right)

Euclidean distance operator serves better than the smoothing operator. It is
much less time consuming and one can obtain easily large scaled hills. In Figures
2.7 and 2.8 the potential field of the image shown in Figure 2.5 is depicted. In the
Appendix-C , the Euclidean distance operator is fully explained [17].

The derivatives of energy field give the forces applied to each snake point. Fur-
thermore the derivatives of the energy field, that is obtained from Euclidean distance
operators are constant everywhere (with - or +). Therefore, it is more suitable to
obtain derivatives that have large values when the the snake point is close to an edge
point, and small values when it is too far from an edge point. So we can put the

potential field in a different form as follows:

P(z,y) = Q(Jeuctidean (T, ¥)) (2.13)

where I.yctidean(Z,y) is the intensity image that comes from a Euclidien distance oper-

ator, and @) is a sigmoid function:
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(2.14)

The constants o and I,,,, are defined to be a smoothing factor and amplitude

of the function @ respectively.

nax

FIGURE 2.6. The function Q(z)

FIGURE 2.7. Potential field
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FIGURE 2.8. Potential field (from noisy image)

2.5. Discretization

Discretization of the snake is performed in two domains: Space and Time.
The spatial discretization is done by sampling the deformable curve v or the interval
Q € M5 nodes, leading to a discrete set (s = 5 € Q) = {1,..., M5}. The distance
between successive snake elements is denoted by ~(3). For an initial snake, this distance
is usually fixed to be costant: h(3) = h = 37 Jo | vs | ds. The time discretization is
similarly achieved and defined to start at time 0. It consists of value # regulary separated
by a constant time step Af: { € T : T = {0, Af,2A%,...}}. This discretization of time

is obviously to perform the numerical integration of the evaluation equation.

FIGURE 2.9. Discrete snake structure
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To solve numerically, the Euler equations 2.12 with m = 0, vy = 1 and assuming

that At = 1, one obtains:

it = ol — ay(al — 2t*1) + aupa(aly; — o) — Bioa(eft] — 2281 + a2f) +

7 i

2:31(33&1 - 2‘735 + w§+1) - ,3,-+1(:cf - 2:vf+1 it $§+2) — Fy (2-15)

Yt =yt — oyt — yED) + an (vl — o)) — B (vt — 298 4 4h) +

28i(yity = 2y} + viy) — Bimalyi — 2%, +vi,) — Fy  (2.16)

where F, and F,, are the ¢ and y components of F respectively ( in the Equation 2.20).
In the Equations 2.15 and 2.16 o and [ are related to the spacial index = 3, but we
can assume that they are equal to a constant value if the image boundaries are not

very complex.

2.5.1. The Weighting Coefficients o and 3

The parameters o and B provide some sort of control upon intrinsic behavior
of the snake with respect to the tension and rigidity. In order to mimic a physical
behaviour, it is natural to define a as a function of the distance between snake point,
and B as a function of curvature in the neighborhood of each snake point.

Another subject that must be examined with respect to the parameters a and
B is the discontinuity. There are two types of discontinuities: The tangent and the

position discontinuities. The former corresponds to fixing B(s) to 0 and the later
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corresponds to fixing a(s) to 0. In some cases introducing those discontinuities is very
useful. For example the position discontinuity can be used for obtaining an open curve.
On the other hand, tangent discontinuity can be used with the intention to being able
to track on fit sharp corners. Tangent discontinuities are useful when the snake is closer
to the data or when the corners are sharp, but they require an interpretation stage that
recognizes the need for introducing such breaks. For example , when a snake reaches
a stable stage, by observing the differences between image edges and snake position ,
interpretation stage can decide to introduce tangent breaks at the required locations.
These parameters can depend on s by defining some metrics L and C which
are called the natural arc length and the natural curvature respectively. L is used to
prescribe the ”desirable” length of snake. Then, the tension parameters a can be fixed

with respect to L as follows:

(2.17)

Usnake = k(

Mk
@

|
)

o)
1l
i

where I(3) = \/Am(i)z + Ay(3)? is the actual distance between successive snake points,
k is the normalization factor and M is the number of snake points that need to be
determined to attain a given image boundary precision. Since the snake is always
trying to minimize its energy and in particular, E;ni(v), when the total length of the
snake is big a is always positive and the snake should shrink. On the contrary when
the snake is too short , a is negative and the snake should expand. We can redefine o

as a weight that affects to each snake points respectively;
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a(3) = k(I(3) — —) (2.18)

When snake points are too much apart from each other , a(3) is positive and the
snake should shrink. On the contrary, for snaxels that are too close to each other , a(3)
1s negative and the snake should expand. C is used to define the desirable curvature

at each snake point. Then, the rigidity parameters 8 can be fixed as follows:

B(s) = k(e(s) — 77) (2.19)

where ¢(3) is the approximated curvature at snaxels 5. There are advantages as well
as disadvantages that arise from this kind of updating o and 8. At each iteration, «
and G is modified for all snake points and this can cause oscillation at the value of L
and C, yielding some unrealistic snaxel displacement. Some techniques proposed by
Leymarie and Levine [13] can be used such as clipping the high values of @ and £ in

order to limit the amplitude that they can take.

2.5.2. The Balloon Model

To force the snake find its way, an initial guess of the contour has to be provided
manually. This has many consequences on the evolution of the curve.

*If the snake is not close enough to an edge, it is not attracted to the edge point.
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*If the snake is not effected by any counterbalancing forces, it tends to shrink
on itself.

Accordingly, an inertial pressure by considering the curve as a balloon, which
is inflated, is introduced [5]. The pressure force is added to the internal and external
forces to push the curve outward. The curve expands and is atiracted to edges as
before. But if the edge is too small or too weak with respect to the pressure force, the
curve passes over the edge, growing outward.

The force f now becomes

F = k{fe, fy] - kaii(s) (2.20)

where 7i(s) is the unit vector normal to the curve at point v(s) and k; is the amplitude
of the force. The coefficient k; and k are chosen in such a way that they fall into the
same level, which is smaller than a pixel size (the length unit).

Note that F' depends on not only the position of v(s), but also on the normal

at this position.

2.6. Comments

Deformable models such as snakes have some similarities with deformable tem-
plates. However, there is an important difference. All the deformable models have
forces which interact with the image and other forces that prevent the structure from

deforming too much. This means that snakes are too floppy. In contrast, the structure
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forces on the deformable templates are global (as big as the template) and interactions
are long range. A deformable template can only be used when a priori knowledge about
the shape of the feat.ure or range of parameter values is known. Snake models can be
thought of as a deformable template in the limit as the number of parameters goes to
infinity.

An advantage as well as a limitation of the snake models emerges from global
way in which an optimal solution is evaluated. This approach to the segmentation
problem makes the active contour or snake seek a global minimum of its energy function.
It offers the advantage of integrating information about the derived potential surface
features along the entire trajectory of the closed snake. This is implemented by seeking

a global minimum of this snake energy function.

FIGURE 2.10. Snakes iteration

The snake model suffers from the following major difficulty : The snake has a
bias toward solutions that reduce its length, that is, the snake naturally tends to shrink.
This negative effect has been reduced by using different approaches for updating o and

B parameters and balloon model.
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Variation of the total energy
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FIGURE 2.11. The total snake energy as a function of iteration

In Figures 2.10, the convergence of the snake to an artificially produced object
is shown. The snake is initialized not too close to the object location in order to
see its trajectory during the convergence. In the image plane there is no noise effect
used. The snake weight parameters o and § are fixed to constant values +0.02 and
+0.02 respectively and the number of snake points is 30 for a good precision of object
shape. Approximately in 600 time steps the snake finds the global energy level which
represent the desired image boundary. In Figures 2.11, 2.12 and 2.13, the total, internal
and external energy level of the snake are shown.

The average external energy per snake point is derived as follows:

e Mﬁ (221)

where P(v;) is the intensity value of the potential image that is obtained from the edge

image. The average internal energy per pixel is obtained as follows;
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FIGURE 2.12. The internal snake energy as a function of iteration
1 ¥ 2 2
By = Y Yoo lvi—vig P48 | vigr — 2v; + vy, | (2.22)
i=1

Augmenting the values of weight parameters increases the smoothing constraint
effect, and this causes the snake to be indifferent to the sharp corners. Decreasing o
causes the snake points to be dispersed irregularly on the snake contour. G makes the
snake points became condense on the sharp corners but if it is fixed to a large number,
the external force becomes ineffective on the snake and the model can not find the
image boundaries.

In figures 2.14 the convergence of the snake in a noisy image is seen. The noise,
that is applied to all pixels is a gaussian noise with mean m = 0 and variance o2 = 10.
The image is first smoothed by a smoothing operator in order to reduce the noise

effect, then preprocessing operators (edge operators, distance operators) are applied
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Variation of the external energy
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FIGURE 2.13. The external snake energy as a function of iteration

to the image. a and (3 are fixed to +0.07 and +0.08 respectively in order to force the
snake to pass through the local minimum . The snake is initialized as the previous
experiment. At first, it converges to a local minimum, where the snake finds the noisy
points supposing that they are edges (In Figure 2.15. Iteration upto 800) Then, by
the effect of internal forces, 1t passes through the local minimum down to the global
minimum. But, because of the large values of the internal forces the snake becomes a

smoothed contour model and can not find sharp corners.

2.7. Experiment on a sequence

The snakes are useful for an image sequence because of its dynamic behavior.
Theoretically, they can easily catch any small deformations of a moving object in the

image plane. Consequently, important features such as eyes and lips can be tracked by

snakes.



28

Variation of the total energy
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FIGURE 2.15. The total snake energy as a function of iteration (with noise in the

image)

The experiments are implemented on the Miss America sequence which consists
of 76 frames, with 360x288 resolution.

Observations throughout the experiment lead to the fact that snakes are too
sensitive to the thickness of the edge points. Spurious external forces created by the
thick edges cause the snakes to go astray with respect to internal forces, and conse-
quently, mismatched paths can be produced. In order to achieve better results , the
edge operator that is used before the Euclidean distance operator must be a powerful
one. The Canny edge operator gives the optimum result in finding edges. Yet the un-
desired edge point causes the snake to move towards itself and consequently undesired
results can be obtained.

In order to find the boundaries of the eye (as shown in the Figures 2.18- 2.19),
Sobel type edge operator gives the most reasonable result, whereas the horizontal edge
operator provides the best result in finding the boundaries of the lips.

Another difficulty arises when large displacements of feature happen between
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Variation of the internal energy
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FIGURE 2.16. The internal snake energy as a function of iteration (with noise in the

image)

frames. For example, if the eye location moves approximately more than 6-7 pixels
per frame, the snake may come across to the attractive potential fields of the pupil or
eyebrow. This negative effect can be removed by using snake‘s center of gravity that

1s defined below:

i1 v(t = to) (2.23)

g(z,y;t =to) =

where M is the number of snake points. Using Taylor expansion so that g(t + At) ~
g(t)+g/(t)At/14+g1(t)A%/1.2+... and assuming that frames are in continuous domain,

the next center of gravity can be estimated as follows:
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Variation of the external energy
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FIGURE 2.17. The external snake energy as a function of iteration (with noise in the

image)

(]

9:(2 + A1) = (9(2) — 9(t — AD) + ¢(?) (2.24)

where g. is the estimated center of gravity. The estimation of center of gravity for the
next frame t + A, can prevent the snake from falling into the potential field of the

unrequired edges.
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FIGURE 2.18. Snakes for eyes and lips location (1. frame)




FIGURE 2.19. Snakes for eyes and lips location (63. frame)
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3. Motion

3.1. Introduction

33

The dynamic evolution of images in time domain provides important informa-

tion, such as motion parameters. Estimated motion parameters play an important role

for different purposes in computer vision research such as intelligent robotic systems,

or model-based image coding . Model-based image coding is related to the subject of

this thesis and we will focus on 3-D motion estimation problems.

3.2.

Projection and Coordinate Systems

A 3-D transformation means that a point (z,y, z) is rotated by 6., 6, and 6,

around z,y,z axes respectively, and translated by T, T, and T, along z,y,z axes

respectively to obtain a point (z’,y’,2"). This leads us to three nonlinear equations

that are difficult to solve and computational expensive.

cosf, —sinf, 0 cosf, 0 sinf,
sinf, cosf, 0 | Ry= 0 1 0
0 0 1 —sinf, 0 coséb,
1 0 0

R:=10 cosf, —siné,

0 sinf; cosf,

(3.1)
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R=R,R,R, (3.2)
z' T Ta:
2 z T,

Object-space lies on 3-D coordinates (z,y,2) and a point place is determined
by them. In a camera system, the point is projected to a plane as shown in Figure 3.1.

The mathematical formulation of the projection is as follows:

X=f— (3.4)

Y =f. yz (3.5)

where f. is the focal length, (z,y, z) are object-space coordinates and (X,Y") are image-
space coordinates as it is seen in figure 3.1. The focal length is an important parameter
which indicates whether it is a orthographic projection or perspective projection. The
former is the special case of the later one when the focal length goes to infinity. While
the perspective projection is applied , the depth information can be extracted easily
from its focal length information. But when the orthographic projection is applied , we
can’t extract the depth information because the focal length is indefinite. Consequently
it is necessary to focus on how to obtain important information about rigid motions
from the differences between the two image frames. So by using the displacement

of a point, assuming that the object makes a rigid motion (not local displacement),
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information about three dimensional parameters (Rotation and translation parameters)
can be obtained. In teleconferences and video-phones system the projection to the

camera plane is generally orthographic. Consequently we will focus on this case.

vY
-

o S

¢

FIGURE 3.1. Basic geometry for three-dimensional motion estimation

X

{xy.2)
Object Space

3.3. Previous Work

Most of the previous works are about the analytical approach of obtaining 3-D
motion parameters. Substantial amount of these works has been devoted to methods
for estimating object motion based on a short sequence.

Generally motion parameters are estimated in between two consecutive frames.
In order to estimate the motion parameters, it is necessary to solve the correspondence
problem. There are two substantial approaches about this problem that most of re-
searchers focus on: Optical flows and object based feature extraction procedures as

deformable template and snakes.
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Optical flow for motion estimation

Determination of optical flow has been a very active search area: Smoothed
optical flow and motion field can be interpreted as vector fields tangent to flows of
planar dynamical systems‘. Stable qualitative properties of motion field , which give
useful information about the 3-D velocity field and the 3-D structure of the scene, can
be usually obtained from optical flow if special conditions are satisfied . Ballard and
Kimball discuss an approach using optical flow to estimate rigid motion.

Optical flows provide a large number of correpondences, but without looking
if either the displacements of the points are global or local (global displacements are
related to rigid motion).

Feature based motion estimation

The use of the deformable models provide an extra information about properties
of the object’s shape: When we use them, we certainly know which point corresponds
global motion.

The work of Tsai is based of discrete features (object correspondence points).
Tsai and Hung give an analysis of one approach to the motion estimating problem. Sig-
nificantly, they have shown that in many cases the solution can be achieved by solving
a set of linear equations, eliminating the difficulties with nonlinear search algorithm
[18] [22].

John Roach and J.K. Aggarwal discusses the problem of determining 3-D model
and movement of an object belonging to an image from a sequence of 2-D images. The
solution of this depends on solving nonlinear equations using modified least-squares
error method.[10]

A. Azabayejani and A. Pentland proposed a formulation for recursive recovery
of motion, pointwise structure, and focal length from feature correspondences tracked
through an image sequence. They used a Kalman filter by forming a set of parameters

of the basic geometrical concepts [3] [4].
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3.4. The Stage of Motion Estimation

Rigid 3-D motion of the object (in this case; head of the speaker) is estimated
in two steps, namely first correspondences between 2-D features points are established
and secondly 3-D motion is estimated from 2-D feature displacements.

The first step is to solve the correspondence problem and it can be implemented
either via a continuous approach or discrete approach. A continuous approach allows
only a small amount of interframe motion based on optical flow. A discrete approach
allows relatively large interframe motion. Points (or corner and center of region),
edges (or lines) contours, and locally intensity patterns can be utilized as features.
Correspondences between features may be established through matching or interframe
tracking.

The second stage concerns estimation of motion parameters and the structure
of the scene from established correspondences. As it is seen in equation 3.3 the equa-
tions are nonlinear. Nonlinear equations generally have to be solved through iterative
methods with an initial guess or through global search. Iterative methods run the risk
of diverging or of converging to a local minimum. Searching in the space of motion
parameters is computationally expensive. Linear algorithms solve linear equations and
give a closed-form solution. The main advantages of linear algorithm over nonlinear

ones are that they are fast and uniqueness is guaranteed except in degenerate cases

[18].
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3.4.1. Least-squares approach

One of the methods is the use of the least-squares approach which is commonly
used to obtain 3-D motion parameters by locally approximating nonlinear equations
as linear equations and iterating them. In order to solve this problem, the coordinate

system is changed as in Figure 3.2

Focal

Object Space

(x,y,2)=0bject-space
coordinate of the physical
pointat

(x"y’ 2")=0bject-space

coordinate of the physical

7 point at L,

FIGURE 3.2. The variation geometry

In order to solve the estimation parameters using the least squares [18], the
geometry of the coordinate system is changed as shown in Figure 3.2. Without loss of
geometry we can assume that the focal length is unity. Thus the image plane is located

at Z = 1. Then, the perspective projection on the image is given as:

X = f (3.6)
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Z
= -
" (3.7
We then obtain a set of equations as follows:
t' = 11T + 0y + T3z (3.8)
Y =7raz 4+ ray + a2 (3.9)
Zl = r31T + T32Y + T332 (310)

where r;; 4,57 = 1,2, 3 are the elements of the linearized matrix R. By using Equation

3.5 we obtain a set of equations as follows:

X' = (r1uX + 7Y + 713)

= 3.11
(ranX + ra2Y + T33) ( )

V' — (raiX + r22Y + T23)
(ranX +r3Y + T33)

(3.12)

Tsai and Huang had worked on the estimation problem of the rotation matrix element

from this point of view and they use 8 points correspondences.[18]
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3.5. Using the neural network model

As neural networks are very effective in solving nonlinear equations, it is very
suitable for solving the 3-D motion estimation problem. The method to estimate the
3-D motion of a speaker’s head based on a head model, we use a "two layer neural
network” for model-based image coding. The neural network consists of an input
layer, and an output layer [11]. The input layer represents 2-D motion vectors of
feature points, while the output layer represents 3-D motion parameters.

The method works as explained below:

1) Selecting five 2-D feature points (P1....P5) as in figure 3.3. The points
(P1....P5) are defined P1=(X;,Y}),...P5=(X;, Ys).

2) Estimation of motion parameters using neural networks.

This method consists of two steps.

In the first step, the facial contour and feature points of the speaker are extracted
using filtering techniques and the snake algorithm. Feature points on a speaker’s facial
image are tracked between consecutive picture frames which give 2-D motion vectors
of the feature points. Then in the second step, the 3-D motion of a speaker’s head is
estimated using a two-layered neural network model.

The neural model for 3-D motion estimation is in Figure 3.6. There are ten
nodes in the input layer (5 X and 5 Y values) , and five nodes in the output layer
(05,8,0.,T,T,). The number of nodes in the hidden layer is arbitrarly provided so
that thay are not very few or too many.

Input signal: After detecting the corresponding feature points in the kth frame,

motion vectors are calculated as follows:
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FIGURE 3.3. Feature points that will be used as a input for neural network

(Da)i = (XY ~ (Xo)? (3.13)

(Dy)i = (WY - (Vo) (3.14)

where left terms denote the motion vector of the feature point 7 between the initial
frame and the kth frame.

In the analytical method of solving the problem of 3-D motion estimation, cu-
mulative errors from earlier frames frequently cause problems. But, in the neural
network approach , we can get around the negative effect of cumulative errors because
the displacement vectors are not calculated from the differences between the consecu-
tive frames; as seen in Eq. 3.14. They are calculated from the differences of current

and initial frames.



¥ 4 J 1
; : '
S el Jua T bz o, b
i 4 ! H
i H } A

! . ) f
[ " 1\
1 H
e - 1
) 1
: o 1
' » 1\
i i
ok $e

| ] v
| ] v
i o
H .‘I i
' ' I

t {

|

L he
! ! v
| 1 )
o H !
5 e 1 - '
th s O ] o
" )
i i
1 H
=
: A

b I
't ] i !
L% fa 1 1] H
| ! H
] H .

! I !
i — L b e
. 13
i |
| H

FIGURE 3.5. Candid Model
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FIGURE 3.6. A typical neural network
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Output signal: Output nodes of the network correspond to the 3-D motion

parameters 0;,0,,6,, T;,and T,,.

—0.3(rad)<= 0, <=+0.3(rad)
~03<=T <=+03 1 _030ad)<=0, <=+0.3(rad)
03<=Ty <=+03 | _030ad)<=6, <=+0.3(rad)

Rotation
and

Translation

Updating

Neural Network
eural Networ Rules

L

FIGURE 3.7. Block diagram of ANN training

Network Training to recognize motion: For classification, network is trained
by candid model, as shown in Figure 3.5, to learn the set of noise-free normalized pat-
terns. The procedure of training the network is shown in figure 3.7. Possible motion
patterns of the human head can be randomly generated but in that situation the con-
vergence of the neural network for training can take time. Therefore, we put patterns
in order for a faster training ( in each epoque, the same order). The rotation values of
angles are constrained between -0.3 rad and +0.3 rad, and the normalized translation

vector components between -0.3 and +0.3 rad by step 0.1 rad. As we have 5 outputs,



they are total 7° motion patterns [19).

Furthermore, too many motion patterns need vast calculation in learning process
and consequently the estimation performance isn’t better. During training, the 3-D
shape model is rotated and translated according to the 7° motion patterns by computer
calculation. Then by projecting the feature points the new co-ordinates of them are
calculated to give the 2-D motion vectors which are input to the neural network.

The back propagation method for training the network has been used in which
learning is performed by computing the error between the desired and actual output

and feeding back this error signal level to the inputs, changing each weight inversely

in propagation to its contribution to the output error.
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3.5.1.  Reduction of Time Complexity for the Training of the
ANN

In the first approach for training, it is assumed that rotation and translation are
performed with respect to the center gravity of the candid model. So we have 5 outputs
and 10 inputs and as seen in Figure 3.3 . The z translation is negligible assuming that
in teleconferences the speaker does not move too much with respect to z.

As mentioned in the previous section, the desired rotation and translation pa-
rameters can take values between —0.3 rad and 40.3 rad by step 0.1 throughout the
training. This leads us to 7 different values. Furthermore, the number of outputs is I
as a result we have 7° motion patterns. ANN is trained 5000 times (5000 epoques. 1
epoque has 7° updatings). The training of ANN takes 36 hours using Spark 2 machine.

We may assume rotation and translation as two different geometric transfor-
mation matrices which can be applied to any object. Translation is less complex than
rotation, so it is not necessary to use ANN in the estimation of translation parameters.

We can remove the translation parameters estimation from the neural network
by assuming that rotation and translation are executed with respect to nose coordi-
nates. As snakes track nose easily, the translation parameters can be obtained from z
and y displacements of the nose itself. As the number of the inputs is 8 and the outputs
1s 3 (only rotation parameters), we have 7° patterns. This approach uses approximately
1/49 of the time the previous methods used for the same task.

3-D motion parameters which are estimated by neural network are shown in
Figure 3.8, 3.9 and 3.10. The rotation and the translation are created sythetically.
These parameters are applied to the candid model. Then the displacement vectors
of the corresponding features are used as inputs of the neural network. As a result

the rotation parameters are estimated in the ouput. Neural network could’t estimate
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the rotation parameters, with respect to z, and y coordinates very properly as shown
in Figures 3.11, 3.12. That is because of the overlapping of the displacement vectors

during the training procedure.
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FIGURE 3.11. Realistic motion and ANN tracking for rotation with respect to x
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FIGURE 3.12. Realistic motion and ANN tracking for rotation with respect to y
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Frame 60 || 0.120 | 0.074 |-0.141 | 0.065 -0.103 | -0.143

Frame 70 || 0.177 | -0.031 | -0.152 | 0.117 -0.071 | 0.153

Frame 80 || 0.207 | -0.009 | -0.084 | 0.185 -0.055 | -0.084

Frame 90 {| 0.229 | -0.004 | 0.031 | 0.295 -0.011 | 0.020

Frame 100 || 0.240 | -0.007 | 0.141 10.324 0.009 0.130

Table 3..1 Numerical Results

Neural Network Performance

0.2 T T T T T = T
0.15 A NN .
0.1 -
— 0.05 ]
g ]
S
3z 0 i
=1
g i

-0.05 §
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-0.15 .
_02 | 1 L 1 ] L i
0 20 40 60 80 100 120 140 160

time step

FIGURE 3.13. Realistic motion and ANN tracking for rotation with respect to z
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4. Animation

4.1. Introduction

Quick, robust synthesis of facial image sequences is desirable for numerous ap-
plications. A promising application in this respect 1s the low-bandwith teleconferencing
by model-based image coding, involve realtime animation. Teleconferencing and other
applications require facial models that are not only computationally efficient, but also
realistic enough to accurately synthesize the various nuances of facial structure and

motion.

4.2. Previous Work

Frederic Parke’s [16] face model is the seminal work in the field of human char-
acter animation. The skin is represented by polygones. While polygone shading tech-
niques create the illusion of as smooth surface, their polygone nature is revealed in the
profile and border of the face.

Keith Waters’s [21] muscle model is one of the first systems to be used for the
simulation of muscle activation. The muscles are defined by point attachements, as-
sumed to be fixed to bones, and the point of insertion, attached to skin. The simulated
muscles deform the polygonal skin model by moving the vertices in a manner that
mimics the effect of contraction of the skin. Terzopoulos [21] developed a dynamic skin
model using the same polygonal surface and muscle place.

Irfan A. Essa, Stan Scarloff and Alex Pentland’s [7] geometric modeling ap-
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proach is based on the use of parametrized implicit functions, particularly polynomial
deformation of superquadric functions. The physical model is developed by discretizing
the geometric model via the finite element method, making use of Galerkin polyno-
mial approximation for shape interpolation. The geometric and physical models are
then combined into a unified model by using the finite element model shape func-
tion as polynomial shape deformations applied to an underlying superquadric implicit
function.

Recently, several physical-based models have been proposed for automatic com-
putation of motion and deformations. Most of them are restricted to elastic material,
which comes back to its rest shape after any deformation. Inspite of their well de-
veloped structures, the methods mentioned, in general have computational complexity

problems, in real-time applications.

4.3. Dynamics of Elastic Models

Deformable models are based on principles of mathematical physics. They react
to applied forces (such as gravity), constraints (such as linkages), ambient media (such
as viscous fluids), impenetrable obstacles (such as supporting surfaces) and to physical
objects .

The dynamics of deformable curves, surfaces and solids are based on elasticity
theory. By simulating physical properties such as tension and rigidity, we can model
static shapes exhibited by a wide range of deformable objects, including string, rubber,
cloth, paper and flexible metals. Furthermore, by including physical properties such
as mass and damping, we can simulate the dynamics of these objects. The simulation

involves numerically solving the partial differential equations that govern the evolving
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shape of the deformable objects and its motion through space.

The equations of motion govern the dynamics of the deformable model under
the influence of applied forces. The equations of motion are obtained from Newtonian
mechanics and balance the externally applied forces with the forces due to deformable

model.

4.3.1. Coordinates Systems

We first recall some definitions and formulate the mathematical problem in
order to understand the dynamics of elastic models more clearly. Let s be material
coordinates in a point of a body Q. For a solid body, s has three components: [sq, 53, s3],
for a surface two components [s1, 52], and for a curve a single component [s;]. The
Euclidean 3-space positions in the body are given by vector valued function of the
material coordinates p(s,t) = [z(s,t),y(s,1), 2(s,t)]. The body in its natural rest state

is specified by p°(s, 1°) = [z%(s, t°),4%(s, 1°), 2°(s, t°)].

4.3.2. Dynamical Equations

The equations of motion can be derived from Newton’s second law:

F=md (4.1)

where F is the net force on a mass m, and & is the acceleration of the point. In 1-D

system, consider the position z(¢) of a mass attached to a spring , a dashpot, and a
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time-dependent external force. Equation (1) turns into

d*z
mﬁ = F(’P"‘ing) + F(dGShPOt) + F(e:cternal) (42)

If the spring exerts a linear restoring force and the dashpot exerts a force pro-

portional to the velocity, then the equation of motion is

d’z dz
md_t2— = —kz — ’)’Zt' + F(ez:ternal)(t) (43)
or
d*z dzr
m dt? + ’)’_dt + kz = F(ea:ternal)(t) (44)

The potential energy associated with the springs:

1
U(sprz'ng) = Ekmz (45)

such that when z is near 0 the spring is considered to be in low energy state
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and when z is far away from 0, it is in a high energy state. Flypring) will try to make

the system be in a low energy state. Flepring)() is related to Ulspring)(2) through

Us TN, m)
F(spring)(m) = _% (46)

so we can get a more general equation of 1-D motion:

d’z dz  Ulspring)()
mm + "‘/E + T = F(ezternal)(t) (47)

Now we have a more generalized equation of motion of each point that obeys
Newton’s laws. However, the equation for the potential energy is more complicated.
The equations governing a deformable model’s motion can be written in Lagrange’s

form as follows:

Op(s,t) | Se(p(s,))
E(T(é) ot )+7(§) ot ' 5p(§,t)

. ﬁ(p(é,t),t) (4'8)

where p(s,t) is the position of the particle s at time ¢, 7(s) is the mass density of
the body at s , y(s) is the damping density, and ﬁ(p,t) represents the net externally
applied forces. &(p) is a functional which measures the net instantaneous potential

energy of elastic deformation of the body. The force is the derivative of this functional,
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6e(p)/6p. However, normal calculus can only take derivatives of functions. So the
Calculus of Variations must be used.

The first term is the inertial force due to the model’s distributed mass. The
second term is the damping force due to dissipation. The third is the elastic force due

to the deformation of the model away from its natural shape.

4.4. Energies of Deformation

The energies of deformation quantifie the model’s actual deformation away from
its rigid shape and in this section we develop potential energies of deformation £(p)
associated with the elastically deformable models. These energies are functionals that
define the internal elastic forces of the models.

The shape of a body is determined by Euclidean distances between nearby
points. As the body deforms, these distances change. Let s and s + ds be the material
coordinates of two nearby points on the body. The distance between these points on

the deformed body in Euclidean 3-D space is given by

dlz = Z Gijdsidsj (49)

1,3

where the symmetric matrix has the (7, 7)’th component given by:

(4.10)
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and is known as the metric tensor or first fundamental form. The curvature

tensor denoted by C is

Faids. (4.11)

where 7 is the normal vector to the surface.

Potential energies of deformation for elastic curves, surfaces and solids can be
defined by using the above differential quantities. In rigid body motion , the potential
energy is zero, but in non-rigid motion the energy grows larger with respect to the
quantities of deformations.

For elastic bodies, the energy is a norm of difference between the fundamental
forms of the deformed body and fundamental forms of the natural, undeformed body.
This norm measures the amount of deformation away from the natural state.

The natural shape of the deformable bodies will be denoted by supercript 0.

For this shape we get the metric tensor as follows:

Gi(P() = 5 75, (4.12)

Thus an analogous strain energy for deformable surface in space is
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Eeur face(P) = /ﬂ I G—G |2+ C = C°|? dsids, (4.13)

and the strain energy for a deformable solid is

wta(p) = [ 1| G = G° | dsrdsydsy (4.14)

The deformation energy is zero for rigid motions and they include the fewest
partial derivatives necessary to restore the natural shapes of non-rigid curves, surfaces,
and solids respectively. However, high-order derivatives can be included to further
constrain the smoothness of admissible deformations of these bodies. Now we can

minimize the integration as follows:

_ 0¢e(p)
e(p) = ap) (4.15)
e(p) = K(p)p (4.16)

where K is the spring matrix. The equation ?? leads us to a calculus of variation (In
appendix A. calculus of variation is fully explained).
Consequently minimzation of the energy mentioned in the equation 4.13 gives

us the spring forces which deform the shape of an object.
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4.5. Solving Linear Equations

To animate the wire frame model, the equation 4.8 must be solved and this
brings us to sparse linear systems. Direct methods such as LU decomposition, and
relaxation methods, such as Gauss-Seidel method can be used to solve these sparse
linear systems. LU decomposition may be expensive for large systems, since the full
matrix version takes O(N?®). Thus, one possible way of solving such systems is through
iterative methods. A simple one is the Gauss-Seidel method which is an iterative

scheme. Let us first consider the second order differential equation:

9%  _0p
M’a? + Da + K(P)P . F(ezternal)(t) (417)

where M, D and K are matrix forms of the mass, damping and spring respec-
tively, and p is the vector that contains all the points of the object. Evaluating p for

first and second order in discrete form leads us to:

t+At_ Gt—At
% = (T (4.18)
2 1At _ont nt—At
=) (4.19)

Now we can estimate the new position p**4! by obtaining a new matrix A such
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that: Ap**4t = b The matrix A is as follows:

M D
A_K+H+E (4.20)
and the vector b is obtained as follows:
M D M D
b=F — + — %r U AiT g
(ezternal)(t) it (Atz e 2At)p + (At o oA+ )q (4 21)

where q = (p* — pt=2¢)/At
At this stage we can consider the iterative scheme of Gauss-Seidel method in

order to solve Ap'*2! = b where the ith appears as:

N
Z Ay T; = b,‘ (422)
j=1

Gauss-Seidel updates z one element at a time. Consider Ty

k-1 N
anTk + ) 05T + 3 agzi = b (4.23)

i=1 J=k+1
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This is a system of N equation, which overdetermines z. Thus , let us consider

one equation:

k-1 N
arLTr + Z QkjT; + Z Qk;T; = by 1=1..N (4.24)
3=1 J=k+1

The equation can be swept through k ,”solving” one row at a time, and loop

fork=1to N

1 k-1 N
= _a—kk(z a4+ ) ak; Ty — by) (4.25)
71=1

I=k+1

Gauss-Seidel does not use very much storage. As the loop proceeds, the new z;
are stored and are used in further computation of the solution vector. If the matrix a
is sparse, the iteration proceed quickly. However, the convergence properties of Gauss-
Seidel are somewhat poor. It will converge if A is positive definite.

Consequently, using such a scheme gives us a confortable usage of the computers

IMemory.

4.6. Approaches for the implementations

The elastic properties of materials constrain the motion and dynamics of ob-
jects in the real world, hence, modeling and simulating the physical characteristics of

these objects is essential to obtain realistic computer modeling for graphics vision and
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animation. This type of modeling is referred to as physics-based modeling.

The major problem for physics-based modeling has been experienced in the
establishment of a unified approach for a geometric representation that should pro-
vide efficient calculation of both geometric relations and non-rigid physical response
to imposed forces. This problem has been addressed by researchers in both computer
graphics and machine vision.

The synthetic tissue is a deformable surface , which is an assembly of point
masses connected by springs, that is, discrete deformable model. Let node ?, where 7 =
1,...., N, represent a point mass m;, whose three-space position is pi(t) = [zi(t), yi(t), z:(2)).
The velocity of the node is o; = dp,/d¢, and its acceleration @, = d%p;/dt?.

Let spring k have natural length [, and stiffness c. Suppose the spring connects
the node 2 to node 7, where 7 = p; — p; is the vector of separation of the nodes. The
actual length of the spring is || 7% ||. The deformation of the spring is e, =|| 7k || — .

The force that the spring exerts on node 7 is

fi= k5, (4.26)
| 7% |l

The total force on node 4 due to springs that connect it to other nodes JEN;

in the deformable surface is:

Flaming®) = Y fi (4.27)
JEN;

The discrete Lagrange equation of motion for dynamic node/spring system is
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the system of second order ordinary differential equations as it explained in section ?7.

d’p; dpi |z 7 -
+ 'Y;_p fs -Ri(apring) . E(emternal); 1= ]-1 vrd¥l (428)

T 7

where «; is the coefficient of velocity-proportional damping, dissipating kinetic
energy in the surface, F‘i(,pﬂ-ng) is the net spring force, ¢; is the net volume restoration
force, and F}(mtemal) is the net external force acting on node 7. It is possible for a
facial point to be displaced from its specific attachment nodes by applying driving
force F’;ztemal(i) to it. But in the project the ﬁi’(ezternal) forces are not used. Instead,
The deformations are achieved by the pulling and the pushing of the point itself as

shown at figure 4.1.

FIGURE 4.1. Deformation of a plane
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To simulate the dynamics of a deformable surface, initial positions p? and the
velocities 47 = 0 are provided for each node 2, and the equations of motion are numeri-
cally integrated forward through time. Each time step requires the evolution of forces,
accelerations, velocities, and positions for all of the nodes. The explicit Euler method
1s a simple and quick time-integration method, but it has a limited range of stability.
Unfortunately, computational complexity will be unavoidable when a higher level of

stability becomes a requirement. From the method explicit Euler integration :

JPt = B ety — % — F(spring) (4.29)
=i (4.30)

UiTAt = Gt 4 Atat (4.31)

pitAt = pf + Atgrtat (4.32)

A convenient way to compute the net nodal forces is to think of f_;-"‘ variables as
the nodal force accumulators. Each spring makes the appropriate force contributions
into the variables of the two nodes to which it is connected to.

The discrete Langrange equation of motion, coupled with explicit Euler time-
integration procedure, provides the foundation for simulating point mass and spring
topologies. However, it is the ability to compute solutions rapidly on even modest
hardware that is most attractive: A surface with several thousand springs and nodes

can be computed and displayed on dedicated graphical workstations in real-time, pro-
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viding not only valuable feedback to the user but also interact directly with the model
[9]. Furthermore the node/spring element lends itself to parallel computation, enabling

larger, more complex surface to be computed.

N f ‘.\\"Iﬂl\\f / \ \ \\- /\/_‘r

SN ——— 3 % I.H
i

px.pl

FIGURE 4.2. The structure of damping and spring system

The constants m; and 4; are chosen such that the facial surface exhibits a slightly

overdamped behaviour.

4.6.1. Two Layered Approach for the Animation of a Face
Model

As it is explained before, the approach to simulate motion based on elastic
models using discretized continuous equations that are extended for modeling inelastic
deformation. In this respect the two layered model represents inelastic material as an
elastic component at rest with respect to a reference component used for computing
motion. Inelasticity is modeled by allowing the reference component to progressively

absorb some of the deformation of elastic layer. In this model, the topology changes
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are limited.

FIGURE 4.3. One layered system

FIGURE 4.4. Two layered system

First, a one layered structure is applied to wire-frame model. But it is observed
that when we pull a point and then let it, the relaxation of displaced points takes time
and we obtain a shape different from the initial shape. By increasing the spring factor,
theoretically we can obtain the initial shape but due to the discrete calculation, the
wire system shows a chaotic behavior.

The use of the two layered approach provides us with a very effective animation.
As it is seen in figure 4.4, the surface that is parallel to the original surface can be called
a virtual layer which has virtual points that are connected to the original points by a
spring. Consequently, we obtain a model that absorbs undesirable behaviours of the
wire frame . The animation is done by only displacing virtual points that consequently
force the original points to itself. In the implementation, this approach is used on

mouth and the result is satisfactory.
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Another way of getting a realistic animation is to define ¢ as follows:

ar when e < ef

cr = (4.33)
Br when e > €f

where the small-strain stiffness ay is smaller then the large-strain stiffness 8. Like real
tissue, this biphasic is extensible at low strains but exerts rapidly increasing restoring

stresses after reaching to a treshold e°.



FIGURE 4.5. An instance from Waters model animation

FIGURE 4.6. Another instance from Waters model animation

66
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5. CONCLUSION

This thesis has presented a system which uses snakes for facial feature tracking
and physics-based face models for animation.

A contour model, Snake , is used to track the position of the head and the
nonrigid motions of eyes and lips. Snake generally requires a manual initialization
.However , researches are being carried out for the automatic initialization of Snake
using genetic algorithm [6] and Hough Transform [12]. Snakes are efficient in tracking
non-amorph objects well defined shape such as cell. But for facial expession estimation
in 2-D , Snakes can cause some problems when the head turns too much . The image
sequences should have a adequete resolution in order to get an accurate extraction of
feature points by snake.

For 3-D motion estimation, a neural network is used. Generally, the 3-D motion
estimation problem is solved by analytical approaches which require a large number
of correspondence. For solving the correpondence problem, snakes are used , but they
don’t provide the required number of correspondence points for analytical solution.
Neural networks are used as a solution to these problems. A new localisation of the
Candid Model has been developed to prevent the extreme time consumption of the
training procedures. Neural network offers an off-line system. Once, it has been trained,
the estimation is done automatically by only giving the displacement vectors of moved
points and the result is the rigid motion parameters.

Theoretically, the technique is tolerent to possible discrepencies between the
3-D geometry of the subject’s face and the face model. But pratically, it is necessary
to add some extra information in order to obtain a significant result.

For a teleconferencing, this system will provide a very high compression ratio

due to the fact that only a required subset of information will be transmitted.
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A Calculus of Variations

Consider the function y(x), where x and y are scalars, and the functional

J[y]:/abF(m,y,yl)dm (A1)

The esiest way to take a derivative is to consider the integral to be a sum of
n terms and let n — co. Divided the interval [a, b] into n equal to segments, the end
points of which are labeled by z;. Let A = z;;; — z2. And we want approximate the

function by a polygonal line with the vertices

(30: yO)) (ml)y1)7 FIETeTy (mm yn); (wn+11yn+1)' (A2)

The integral can be approximated by using finite differences as follows:

Yirr — ¥
J(Y0,Y1,..Yn) = hZ F(zi,yi, %y)- (A3)

If we compute the partial derivatives of J, we get:
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0J (Yo, Y1, --Yn) Vit1 — ¥
= F 1y Y1y

Yi — Yi—1 Yit1 — Y:
)~ Fuloy, +h =) (A5)

+Fyl(mi—17 yi—l,

where F,, is the function 0F/8y and F, is the function 8F/dyr. From functional

analysis

§J[y] , 19J(yo, Y1, ---Yn)
gy = fim =

The extra factor of & allows the limit to exist, since the partial derivatives scale

as h.

§J[y] ) Yit1 — Yi
Ty = Am IR e w =) (A7)
1 Yi — Yi- Yigr — Vi
_E(Fyl(mi—hyi—la _hl) BN Fyl(mb Yi, Llh—))] (A8)

Passing to continuum limit yields the variational derivatives
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—_— = - — A
8y ay d:z:(ayl) 2)
More generally , if a functional is the form
:/bF(w,y,yl,....y(N))dw (A10)
then the variational problem became
N
6F
—-1)"— All
where y(™) means the nth derivative of Y
An even more general formula is when the functional is of the form
Jly] = /n F(z,y,y/)dz (A12)

where the integral is now a multiple integral over z € Q. In the case, the

variational derivative is
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§Jy] 0
by == ; BmiFy“" ()
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B The Back-Propagation Training Algorithm

The back-propagation training algorithm is an iterative gradient algorithm de-
sired to minimize the mean square error between the actual output of a multilayer
feed-forward perception and desired output. It requires onto diffretiable non-linearities.
The following assumes a sigmoid logistic non-linearities is used where the function f(«)

18

(B1)

Step 1.Initilize weights and offsets Set all weights and nodes offsets to small

random values

Steps 2.Present input and desired outputs Present continous valued input vector
Zo, T1,....TN-1, and specify the desired output dy, dy, ....dpr—1.
Step 3.calculate actual outputs Use the sigmoid nonlinearity from above and

formulas to calculate outputs yo,¥1,....ynr-1

Step 4.Adapt weights Use a recursive algorithm starting at the output nodes

working back to the hidden layer. Adjust weights by

w,-j(t + 1) = w,-j(t) + T](sj:I;,'l (BZ)

In this equation wy;(t) is the weights from hidden node 7 or an input to node j
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at time t, 2/ is either the output of node 2 or is an input, is a gain term, and 1is an

error term for node j. If node 7 is an output node, then

65 = y;(1 — y;)(d; — v5) (B3)

where d; is the desired output of node 5 and y; is axtual output. If node j is

an internal node, then

5]' = :Ejl(l . (Ej/) Z Wik (B4)
k

where k is overall nodes in the layers above nodes j. Internal node thresholds are
adopted in a similar manner by assuming thay are connection weights on link from
auxilary constant-valued inputs. Convergence is sometimes faster if momentum term

is added and weight changes are smoothed by

wii(t 4 1) = wij(t) + néjzdt + a(wy;(t) — wii(t — 1)) (B5)
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C Potential Field

In order to create a potential field from an intensity image the recursive Rosendeld
and Pfaltz distance operator can be used.

The distance transformation operator can be implemented as either recursive
or a nonrecursive operator. It requires a binary image whose border pixels are labeled
0 and whose interior pixels are labeled . The purpose of distance transformation
operator is to produce a numeric image whose pixels are labeled with the distance
between each of them and their closest border pixel. The distance between two pixels
can be defined by the length of the shortest 4-connected path (city block distance) or
8-connected path (max or chessboard distance) between them.

As a nonrecursive operator, the distance transformation can be achieved by
successive application of the pair relationship operator. In the first application the
pair relationship labels with a 1, all pixels whose label is ¢ and that are next to a pixel
whose label is 0. All other pixels keep their labels. In the nth application, tha pair
relationship operator labels by an 7, all pixels whose label is 7 and that are next to a
pixel whose label is n — 1. When no pixel has the label 7, an application of the pair
relationship operator changes no pixel value, and the resulting image is the distance
transformation image. This implementation is related to the one given by Rosenfeld
and Pfaltz.

Another way of implementing this operator nonrecursively is by the iterative

application of the primitive function defined by
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f
1 ifa,=2,n=0,....N

min {b|for somen < N, a, #1,b = a, + 1}
h(aog,....an) = ¢ (C1)

if ap = 7 and there exists n such that a, # 1

ap if ao#’i
\

where ¢ 1s the special interior pixel label.
Another way of implementing the distance transform involves the apvlication
of two recursive operators being applied in a left-bottom scan and the second operator

in a right-left, bottom scan. Both operators are the primitive function h defined by

0 ifay=20
h(ao,....an) = (C2)

min{ay,....,an} +d otherwise

In 8-connected mode, the output symbol y of the first operator is defined by

y = h(z2, z¢, T7, T3, T0; 1) (C3)

In 4-connected mode, the output symbol y is defined by
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X, X5 X
X3 X0 Xy

FIGURE C1. 8-connected window

y = h(zg, z3,0;1) (C4)

For the second operator, the primitive function is simply the minimum function,

In the 8-connected mode, the output symbol y of the second operator is defined by

y = min{mo,g(-’c1, T4, s, Tg; 1)} (05)

In 4-connected mode, the output symbol y is defined by

y = min{zo, g(z1,z4;1)} (C6)

where g(as, ....,zn; d) = min{ay, .....,an)} + d.
It is possible to compute a distance transformation that gives distances closely

approximating Euclidean distance. For the first left-right, top-down pass, the output
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y is given by

y = min{h(z, 23, zo; d1), h(zs, 27, z0; d2)} (CT)

For the second right-left, bottom-up pass, the output y is given by

y = min{g(@1, z4; d1), h(zs, z8; d2)} (C8)

Montanari puts d; = 1 and dy = V2. This gives the correct Euclidiean distance
for all shortest paths that are vertical, horizontal, or diagonal. Barrow and Nitzian

and Agin use a scaled distance and put d; = 2 and d3 = V2



D Animation

FIGURE D1.

of falling ball

Falling ball
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